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CALCULATIONS OF κb AND κt IN THE MS MODEL

In this section we present the details of the calculations of κb and κt, reported in Eqs.(3) amd (4) of the main text.
Defining A1 = A+ ε and A2 = A− ε, we write the energy of the model as follows
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where ETWLC indicates the energy of the standard TWLC model and the two additional terms are the contributions
from the bending anisotropy (ε 6= 0) and the twist-bend coupling (G 6= 0).

As shown in Fig. 1 of the main manuscript, we introduce an orthonormal set of vectors {ê1, ê2, ê3} which is associated
with every point along the molecule. Here ê3 is the tangent to the curve and ê1 points from the center of the helix
towards its minor groove. The third vector is obtained from the relation ê2 = ê3 × ê1. In a relaxed dsDNA molecule
the helical axis is completely straight, corresponding to ê3(s) being constant along the molecule, where 0 ≤ s ≤ L is
the arc length. The double helix makes a full turn every l = 2π/ω0 ≈ 3.4 nm, which means that ê1(s) and ê2(s) are
rotated by an angle of ω0s with respect to ê1(0) and ê2(0). Any deformation from this ideal state can be described
by the following differential equation [1]

dêi
ds

= (ω0ê3 + Ω)× êi, (S2)

where |ω0ê3 +Ω| ds is the infinitesimal angle around the direction of the vector ω0ê3 +Ω, by which the set {ê1, ê2, ê3}
is rotated when going from s to s + ds. In general Ω(s) depends on the position s and it is customary to introduce
the three local components as follows Ω = Ω1ê1 + Ω2ê2 + Ω3ê3.
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We now need to express {Ωi} as functions of the vectors {êi} and their derivatives. For this purpose we use the
relations

dê1

ds
= (ω0 + Ω3) ê2 − Ω2ê3, (S3)

dê2

ds
= Ω1ê3 − (ω0 + Ω3) ê1, (S4)

dê3

ds
= Ω2ê1 − Ω1ê2, (S5)

which are obtained from Eq. (S2). Next we discretize the model introducing a discretization length a and using the
following approximations

dêi(s)

ds
≈ êi(s+ a)− êi(s)

a
, (S6)

êi(s) ≈
êi(s+ a) + êi(s)

2
. (S7)

In order to parametrize the rotation of the frame {ê1(s), ê2(s), ê3(s)} into {ê1(s+a), ê2(s+a), ê3(s+a)}, we introduce
three Euler angles α(s), β(s) and γ(s). These angles correspond to a sequence of three elementary rotations: one
about ê3, followed by one about ê1 and finally a rotation about ê3, respectively

êi(s+ a) =

3∑

j=1

Rij(α, β, γ)êj(s), (S8)

where R is the product of three rotation matrices

R = E3(γ)E1(β)E3(α) (S9)

with

E1(φ) =




1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 and E3(φ) =




cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 . (S10)

Plugging this into Eq. (S9) gives

R =




cosα cos γ − sinα cosβ sin γ sinα cos γ + cosα cosβ sin γ sinβ sin γ
− cosα sin γ − sinα cosβ cos γ − sinα sin γ + cosα cosβ cos γ sinβ cos γ

sinα sinβ − cosα sinβ cosβ


 . (S11)

We can now combine the above equations in order to obtain

Ω2
1 = ê1 ·
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=
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2
· ê2(s+ a)− ê2(s)

a
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a
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, (S12)

Ω2
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dê3
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× dê1
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=
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a2
(S13)
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and hence

Ω2
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2

a2
(1− cosβ) , (S14)
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2
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The other two terms appearing in Eq. (S1) are

Ω2
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)
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)
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0
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, (S16)

Ω2Ω3 = −dê3

ds
·
(
dê2

ds
+ ω0ê1

)
=

sinβ [2(cos γ − cosα) + aω0 (sinα− sin γ)]

2a2
. (S17)

In the continuum limit a → 0, the Euler angles become infinitesimally small, i.e. α, β, γ → 0. This allows us to
approximate

1 + cosβ ≈ 2, (S18)

cosα+
aω0

2
sinα ≈ cos (α− φ0) , (S19)

cos γ +
aω0

2
sin γ ≈ cos (γ − φ0) , (S20)

cos (α+ γ) + aω0 sin (α+ γ) ≈ cos (α+ γ − 2φ0) , (S21)

where we have defined

φ0 ≡
aω0

2
≈ sin

(aω0

2

)
(S22)

and made use of cosφ0 ≈ 1. With the above approximations we get

Ω2
3 =

2

a2
[1− cos (α+ γ − 2φ0)] + ω2

0 , (S23)

Ω2Ω3 = − 1

a2
sinβ [cos (α− φ0)− cos (γ − φ0)] . (S24)

Substituting Eqs. (S14), (S15), (S23) and (S24) into (S1) and transforming the integral into a sum over segments of
length a (

∫ L
0
ds . . . ≈ a

∑
i . . .) yields

EMS

kBT
= −1

a

∑

i

{A cosβi + C cos (αi + γi − 2φ0)− ε (1− cosβi) cos (αi − γi)

+G sinβi [cos (αi − φ0)− cos (γi − φ0)]} , (S25)

where we have omitted any constant terms. One can simplify this expression by introducing the angles ψi ≡ αi+γi−2φ0
and χi ≡ αi − γi, so as to obtain

EMS

kBT
= −1

a

∑

i

[
A cosβi + C cosψi − ε(1− cosβi) cosχi − 2G sin

χi
2

sin
ψi
2

sinβi

]
, (S26)

where βi and ψi are bending and twist angles, respectively.

The total partition function can be written as

Z =
∏

i

(∫
dβi sinβidψidχi

)
e−EMS/kBT , (S27)

where βi ∈ [0, π] and ψi, χi ∈ [−π, π]. As the total energy is the sum of independent contributions, it is sufficient to
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consider the partition function of a single segment
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∫ π

0

dβ sinβ
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χ

2
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ψ

2
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]}
. (S28)

We require that the quadratic form (S1) be positive [2], so that the minimum of the energy corresponds to a straight
(β = 0) and untwisted (ψ = 0) conformation. The minimum does not depend on the value of χ. In the limit a → 0
we can expand the trigonometric functions in Eq. (S28) around β = ψ = 0 and extend the integration domains of
these two variables to ∞

Zsegm ≈ e(A+C)/a
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where the dots (. . .) denote numerical prefactors which can be ignored, since they do not contribute to thermal
averages [3].

We are interested in the following averages

〈cosβ〉 = a
∂

∂A
lnZsegm = 1− a

A

1− G2

2AC

1− ε2

A2
− G2
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(
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ε

A
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(S30)

and

〈cos(α+ γ − 2φ0)〉 = a
∂
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lnZsegm = 1− a

2C

1− ε

A

1− ε

A
− G2

AC
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. (S31)

The difference of a factor 2 in the definitions above stems from the differences in the integrations over the Euler
angles, with integration elements dβ sinβ and dψ for bending and twist, respectively. We have defined

κb = A
1− ε2

A2
− G2

AC

(
1 +

ε

A

)

1− G2

2AC

(S32)

and

κt = C
1− ε

A
− G2

AC

1− ε

A

, (S33)

which are Eqs. (3) and (4) of the main paper. These equations show that the bending and twist fluctuations between
neighboring segments are governed by renormalized bending and torsional stiffnesses κb and κt. In the TWLC limit
G, ε → 0 we get κb = A and κt = C, while a finite twist-bend coupling (G 6= 0) gives κb < A and κt < C. This
renormalization is induced by thermal fluctuations, resulting in twisting a thermally fluctuating chain (κt < C) costing
less energy than twisting a straight segment (κt = C). Note also that a bending anisotropy in absence of twist-bend
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FIG. S1. Comparison between Eqs. (S32) and (S33) (black, solid lines) and computer simulations (blue diamonds), showing the
dependence of κb and κt on the anisotropic bending (a,b) and twist-bend coupling (c,d). In both cases theory and simulations
are in good agreement. The error bars are the SEM, and are not shown where they are smaller than the point size.

coupling (G = 0 and ε 6= 0) has no effect on the torsional stiffness (κt = C), but it modifies bending as

1

κb
=

A

A2 − ε2
=

1

2

(
1

A1
+

1

A2

)
, (S34)

i.e. the renormalized bending stiffness is the harmonic mean of A1 and A2 [4, 5].

Eqs. (S32) and (S33) are exact in the continuum limit a → 0. Here we compare them with simulations in order
to test the computer model employed for the numerical calculations. As a first test, we studied the effect of bending
anisotropy and twist-bend coupling separately. More specifically, we ran simulations for G = 0 and measured the
dependence of κb and κt on ε. The results are summarized in Figs. S1(a) and S1(b), where we also compare with the
expressions

κb
A

= 1− ε2

A2
and

κt
C

= 1, (S35)

as predicted by Eqs. (S32) and (S33). We also tested the dependence on G, by setting ε = 0 and comparing with the
predictions of Eqs. (S32) and (S33)

κb
A

=
1− G2

AC

1− G2

2AC

and
κt
C

= 1− G2

AC
. (S36)

The results are shown in Figs. S1(c) and S1(d). In all cases we observe a good agreement between the two, though
the computer model seems to slightly underestimate κb in a systematic way, compared to Eq. (S33). A possible
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FIG. S2. Comparison between Eqs. (S32) and (S33) (black, solid lines) and computer simulations (blue diamonds), showing
how the κb and κt are affected when one introduces both the anisotropic bending and the twist-bend coupling simultaneously.
In (a) and (b) we display the dependence of κb and κt respectively, on the bending anisotropy ε, with the twist-bend coupling
constant being fixed at G = 20 nm. In a similar manner, in (c) and (d) we fix the bending anisotropy constant ε = 20 nm and
vary G. In all cases, the agreement between theory and simulations is very good. The error bars are the SEM and is not shown
where it is smaller than the point size.

origin is the continuum-limit approximation that we introduced in the analytical calculation, as our computer model
is discrete.

Furthermore, we tested the combined effect of bending anisotropy and twist-bend coupling, by keeping one of the
two properties fixed, while varying the magnitude of the other. More specifically, in Figs. S2(a) and S2(b) we show
how κb and κt depend on ε, when setting G = 20 nm. Similarly, in Figs. S2(c) and S2(d) we have taken ε = 20 nm
and plotted the G-dependence of the persistence lengths. Again, the agreement between theory and simulations is
very good, even under this extreme “softening” of the rod. Thus, we conclude that our computer simulations are in
very good agreement with Eqs. (S32) and (S33), apart from a slight systematic deviation in κb.

From Eqs. (S30), (S31) one easily obtains the correlation functions. For instance, bending correlations are given by

〈ê3(0) · ê3(na)〉 = 〈cosβ1 cosβ2 . . . cosβn〉 = 〈cosβ〉n ≡ e−na/lb , (S37)

where lb is the bending persistence length. We then have

lb ≡ −
a

ln 〈cosβ〉
= − a

ln
(

1− a
κb

) ≈ κb, (S38)

in the limit a→ 0. In a similar manner (see for example [6]) one can define a correlation length associated with twist
as

lt ≈ 2κt (S39)
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FIG. S3. An schematic example of the DNA computer model used in this work. The molecule is simulated as a series of
connected beads, two of which are shown. The beads are separated by a distance |r|, and carry a local orthonormal frame
{ê1, ê2, ê3}, which is represented by three small particles.

COARSE-GRAINED COMPUTER SIMULATIONS OF DNA

Computer simulations of the TWLC and MS model were performed using a coarse-grained bead-and-spring model,
similar to the one discussed in Ref. [6], with the addition of twist-bend coupling and anisotropic bending interactions.
Each bead is a rigid spherical body, consisting of a core particle and three patches at fixed distance from the core
defining a local frame {ê1, ê2, ê3}. Fig. S3 shows an example of two adjacent beads, together with the two respective
frames, denoted by {ê1, ê2, ê3} and {ê′1, ê′2, ê′3}. These beads are connected via a strong finitely extensible nonlinear
elastic (FENE) interaction, which keeps their separation distance r very close to a fixed value |r| ≈ a. A very strong
interaction term is also used in order to align ê3 with r [6], ensuring that ê3 is the local tangent to the polymer
chain. The Ωi terms are computed from a discretization process, as shown in the previous section. For instance, the
calculation of Ω2

1 (Eq. (S13)) yields

Ω2
1 =

1 + ê′1 · ê1 − ê′2 · ê2 − ê′3 · ê3

a2
. (S40)

All other terms in the energy functional (S1) are calculated in a similar way, and can be expressed as scalar products
between {ê1, ê2, ê3} and {ê′1, ê′2, ê′3}. In our discretization setup we choose beads with diameter a = 2.3 nm corre-
sponding to 6.7 base pairs, which is a good compromise between numerical accuracy and computational efficiency.
There is no intrinsic twist, i.e. ω0 = 0, in the simulations. The two ends of the polymer were attached to an impene-
trable surface and a large bead, similarly to a typical MT experiment. We included the effect of the solvent implicitly,
by means of Langevin forces [7]. A repulsive Lennard-Jones potential with an effective, hard-core diameter of 3.5 nm
[8] was used, in order to avoid distant parts of the polymer from overlapping. The effective torsional stiffness was
calculated from the relation Ceff = L/σ2

θ , where L is the contour length of the polymer (L = 1 kbp in the simulations)
and σ2

θ is the variance of the twist angle. All simulations were performed with the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [9].

FORCE-EXTENSION SIMULATIONS

In order to test the used parametrization of the MS model, we performed simulations of a dsDNA under an applied,
stretching force in the range f = 0.08 − 6.25 pN and measured its extension in absence of twist (Fig. S4). We
compare between the TWLC with A = 43 nm and C = 110 nm, and the MS model with the values of parameters
used throughout this work, i.e. A = 56 nm, ε = 10 nm, C = 110 nm and G = 40 nm. The MS model with this
parametrization fits the Ceff data, as shown in the main text, and yields a persistence length of lb = 43 nm, Eq. (S32).
Fig. S4 also plots the asymptotic expression of the WLC force-extension curve [10]

flb
kBT

=
1

4

(
1− z

L

)−2
(S41)

and the approximated interpolation formula

flb
kBT

=
1

4

(
1− z

L

)−2
− 1

4
+
z

L
. (S42)
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FIG. S4. Force-extension computer simulations of the TWLC (A = 43 nm and C = 110 nm) and the MS models (A = 56 nm,
ε = 10 nm, C = 110 nm and G = 40 nm), together with the interpolated result of Eq. (S42) and its high-force limit of Eq. (S41).
Both models are in good agreement with these expessions. The error bars (SEM) are smaller than the size of the points and,
thus, not shown.

The latter is known to reproduce within few percents the force-extension experimental data in a wide range of forces
and is in good agreement with both the TWLC and the MS models. The conclusion is that the MS model, with the
parametrization used throughout this work, is consistent with the measured force-extension curves.

DEPENDENCE OF Ceff ON G AND ε

We tested the dependence on G and ε of the effective torsional stiffness as obtained from simulations of the MS
model. Figure S5 shows the results of the simulations for (a) fixed G and varying ε and for (b) fixed ε and varying
G. Ceff depends weakly on ε, while is much more sensitive to a change of G. Figure S5(b) shows that the range
30 ≤ G ≤ 50 nm fit the experimental data including error bars, hence our estimate of twist-bend coupling constant is
G = 40± 10 nm.
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FIG. S5. Effective torsional stiffness Ceff obtained from simulations of the MS model as a function of the rescaled variable√
kBT/A0f for different values of G and ε. (a) The twist-bend coupling constant is fixed to G = 40 nm, and we vary ε = 0,

10 and 20 nm (reduced χ2 = 0.83, 0.82 and 1.3, respectively). (b) The bending anisotropy is fixed to ε = 10 nm and we vary
G = 30, 40 and 50 nm (reduced χ2 = 2.1, 0.82 and 2.5, respectively). The intrinsic torsional stiffness is set to C = 110 nm,
while A is fixed by imposing lb = 43 nm.
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FIG. S6. Dependence of the bending persistence length of dsDNA on the monovalent salt concentration. The plotted data are
from Bustamante et al. [11], Wenner et al. [12], Forth et al. [13], Lipfert et al. [14–17], Herrero-Galan et al. [18] and Marko
et al. [19]. The salt dependence can be fitted with a function of the form κb = κ0 +m[salt]−α, where [salt] is the monovalent
salt concentration, α is a scaling parameter and κ0 and m are fitting parameters. According to the models by Odijk [20] and
Skolnick and Fixman [21] it is α = 1 (fit shown as dashed line), while the model by Barrat and Joanny [22] predicts α = 1/2
(fit shown as solid line). The experiments discussed in the main text are at 100 mM and 150 mM monovalent salt, which
correspond to a bending persistence length within the range 43− 48 nm.

DEPENDENCE OF Ceff ON THE BENDING PERSISTENCE LENGTH

The experiments reported in Fig. 2 of the main text are from two independent single-molecule approaches: freely
orbiting magnetic tweezers (FOMT) from Ref. [16] and magnetic torque tweezers (MTT) from this work. The DNA
construct was the same in both cases (7.9 kbp, as described in Ref. [15]), but the buffer conditions were slightly
different, corresponding to 150 mM (FOMT) and 100 mM (MTT) monovalent salt concentration (the details of the
MTT experiments are discussed below). As shown in Fig. S6, the bending persistence length at 100 − 150 mM salt
lies typically within the range 43 − 48 nm. For the data shown in the main text the bending persistence length was
chosen to be κb = 43 nm (taken from Ref. [16], obtained from force-extension measurements).

In Fig. S7 we plot with solid lines the results of simulations of the MS model, in which the persistence length
was fixed at κb = 43 nm (as in the main text), κb = 45 nm and κb = 48 nm, while keeping ε = 10 nm and
C = 110 nm. Solid lines are the best fit of the MS model to the experimental data for the given κb. All three sets
fit equally well the experiments and, as κb increases, also the fitted value of G increases (we find G = 43 nm and
G = 47 nm for κb = 45 nm and κb = 48 nm, respectively). Note that an increase in the persistence length leads to
a stronger deviation of the Moroz-Nelson theory, plotted with dashed lines in Fig. S7, from the experimental data.
Therefore, in order to fit experiments, one needs a higher correction from twist-bend coupling (higher G) for higher
κb. In conclusion, for the range of values of κb corresponding to the experimental conditions, the TWLC does not fit
the MT data and one needs a relatively large value of the twist-bend coupling coefficient G to reconcile theory and
experiments.

MAGNETIC TORQUE TWEEZERS MEASUREMENTS

Measurements were performed employing a home-built MT setup and a 7.9-kbp DNA construct, as described
previously [15]. Specific and torsionally constrained coupling of the dsDNA to magnetic beads (1.0 µm diameter,
streptavidin-coated MyOne beads; Life Technologies, USA) and the flow cell surface was achieved through ligation of
∼ 600 bp PCR-generated DNA fragments, comprising multiple biotin- and digoxigenin- modified dUTP moieties (Jena
Bioscience, Germany), respectively, to the central, unmodified DNA. The labeled dsDNA molecules were attached to
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FIG. S7. Solid lines: simulations of Ceff for the MS model using different input values of the bending persistence length κb.
The values we tested (43, 45 and 48 nm with blue, green and red solid interpolated lines, respectively) are representative of the
experimental conditions (100 − 150 mM monovalent salt, see Fig. S6) and all yield an excellent fit to the MT data (reduced
χ2 = 0.74, 0.66 and 0.71, respectively). Note that an increase in the persistence length leads to stronger deviations between the
TWLC prediction (Moroz-Nelson theory, Eq. (5) of main text, plotted with dashed lines) and the experimental data (reduced
χ2 = 6.1, 9.0 and 12.6 for κb = 43, 45 and 48 nm, respectively). As a consequence, the best-fit value of G also increases with
κb (G = 40, 43 and 47 nm, respectively). In all simulations we fixed C = 110 nm and ε = 10 nm (parametrization used in the
main text), and chose A according to Eq. (S32).

the streptavidin coated beads by incubating 5 ng of the DNA construct with 2 µL of MyOne beads in a final volume
of 100 µl of phosphate buffered saline (PBS; Sigma-Aldrich, USA) for 12 min.

Flow cells were constructed by assembly of two glass coverslips (24× 60 mm, Carl Roth, Germany) separated by a
single parafilm layer. The bottom coverslip was first modified using (3-Glycidoxypropyl)trimethoxysilane (abcr GmbH,
Germany), subsequently reacted for one hour with anti-digoxygenin (100 µg/ml in 1× PBS; Roche, Switzerland) and
then passivated using BlockAidTM Blocking Solution (Thermoscientific) for one hour. After flushing of the flow
cell with PBS buffer, the DNA-bead solution was introduced and allowed to bind for 12 min. Unbound beads are
removed from the flow cell by flushing with 800 µL of PBS buffer. To verify that selected beads are bound to a
single, torsionally constraint dsDNA tether, several tests were performed using a pair of cubic permanent magnets
(5× 5× 5 mm3; W-05-N50-G, Supermagnete, Switzerland), oriented in a horizontal configuration above the flow cell.
First, the external magnets are moved vertically to exert alternating nominal forces of 5 pN and 0.1 pN in order to
approximately determine the contour length of the tether. Next, magnets are rotated counterclockwise by 20 turns
at high (5 pN) and low (0.5 pN) applied force to identify beads attached via single and fully torsionally constrained
dsDNA molecules, using the known rotation-extension behavior of dsDNA [23]. Finally, the flow cell was flushed with
∼ 500 µL of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH = 8.0) supplemented with 100 mM NaCl, in which the
measurements were performed. The relationship between magnet height and applied stretching force was determined
from the in-plane fluctuations by spectral analysis as described previously [17, 24].

We performed single-molecule torque measurements using our implementation of magnetic torque tweezers (MTT),
a variant of MT that uses a cylindrical magnet with a small additional side magnet to exert a slightly tilted, vertical
magnetic field [15]. This field configuration provides a weak rotational trap for the bead, while applying an upward
pulling force. At magnet heights of 3, 4 and 5 mm, corresponding to applied forces of 0.9, 0.4 and 0.2 pN, respectively,
we probed the extension and torque response [15, 17] of the DNA molecules upon changing the linking number in steps
of two turns, for a total number of 24 turns symmetrically around zero turns, corresponding to the torsionally relaxed
molecule. Multiple single-molecule torque and extension measurements were averaged; the data shown correspond to
21, 81, and 32 independent molecules for the 0.2, 0.4 and 0.9 pN data, respectively.
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FIG. S8. Relative extension z/L and torque τ , as functions of the supercoiling density σ, for two different forces (a) f = 0.2 pN
and (b) f = 0.9 pN. Open, red circles are from MT experiments, full, black circles from TWLC and full, blue triangles from
MS simulations. The shaded areas correspond to the estimated pre-buckling regime. The figures show the same features as
Fig. 3 of the main text.

For the overlay, a shift offset was applied to the extension vs. turns traces, such that the extension-rotation curves
are centered around zero turns for small forces (< 1 pN). The same shift was applied to the corresponding molecular
torque data. Similarly, a constant extension offset was applied to the extension data to correct for slightly different
attachment geometries of the DNA to the magnetic beads. As a consequence, the absolute extension has a larger
uncertainty than the relative extension measurements, which rely on the look-up table based Z-tracking in the magnetic
tweezers with a tracking accuracy of ∼ 1 nm [25, 26].

ADDITIONAL EXTENSION AND TORQUE EXPERIMENTS AND SIMULATIONS

Besides the extension and torque data presented in Fig. 3 of the main text, we repeated the experiments and
simulations for two different forces. Figure S8 shows the additional plots for the two forces (a) f = 0.2 pN and (b)
f = 0.9 pN. These data show a similar behavior to Fig. 3 of the main text and confirm that the torque is more
accurately reproduced by the MS model, whereas the post-buckling extension agrees with the the TWLC simulation
data.
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FIG. S9. Determination of the intrinsic torsional stiffness C from linear extrapolation of the experimental Ceff vs. force data.
Fitting a function of the form Ceff = C + Γ/

√
f to the experimental data (same as in Fig. (2) of the main text), allows us

to extract C. Extrapolations using all data give C = 105 nm (solid line), while if we restrict to forces f > 0.3 pN we get
C = 110 nm (dashed line). Our final estimate is C = 110± 5 nm.

EXPERIMENTAL DETERMINATION OF THE INTRINSIC TORSIONAL STIFFNESS C OF DNA

Several experimental techniques, such as magnetic and optical tweezers, cyclization rates and topoisomer distribu-
tions have been used in the past in order to determine the value of the intrinsic torsional stiffness C. Table I gives a
concise overview, with references, of the measured values from several such studies. As shown in the Table there is a
wide variation in the estimates.

The experimental techniques can be divided into two distinct families, depending on whether there is a stretching
force applied to DNA or not. One central result of the current study is that the MS model predicts two distinct values
of the torsional stiffness: at high stretching forces twist is governed by the intrinsic stiffness which we estimate as
C = 110 nm, while bending fluctuations in an unstretched DNA renormalize the stiffness to a value κt = 75 nm. This
conclusion is supported by the experimental data reported in Table I.

If the DNA is elongated by a sufficiently strong force, as in magnetic or optical tweezers, bending fluctuations are
suppressed (Ω1 ≈ Ω2 ≈ 0) and both the TWLC and the MS models converge to the twistable rigid rod limit

βETWLC ≈ βEMS ≈
C

2

∫ L

0

Ω2
3 ds− βfL, (S43)

where twist stiffness is governed by the parameter C. In practice one can estimate C from the high-force limit of Ceff.
Figure S9 shows an extrapolation based on a two-parameter fit

Ceff(f) = C +
Γ√
f
, (S44)

with C and Γ being the fitting parameters. As shown in the figure, it is convenient to plot Ceff(f) vs. 1/
√
f where

the fit has the shape of a straight line. The analysis yields C = 110± 5 nm, which is the value used throughout the
paper.

Extrapolations of C from experimental data sometimes use the Moroz-Nelson curve

Ceff(f) = C

(
1− C

4A

√
kBT

fA

)
, (S45)

with C as a free fitting parameter, A being the fixed persistence length. This is the procedure used to obtain C from
magnetic and optical tweezers data reported in the first four rows of Table I. In this fit one assumes that the dsDNA
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FIG. S10. Comparison of the TWLC (using the Moroz and Nelson formula, Eq. (5) of main text) and the MS model to all
available single-molecule torsional stiffness data [13, 15–17, 27–31]. (a) Red symbols are all available single-molecule data on
the torsional stiffness of DNA, for which a clear stretching force can be assigned. The black line is the prediction of the Moroz
and Nelson formula, taken to third order (see [32]), with A = 45 nm and a (limiting value) C = 110 nm (reduced χ2 = 14.4).
The green line is a fit of the Moroz and Nelson formula to the data with C treated as a fitting parameter, yielding C = 92.2 nm
(reduced χ2 = 4.0). The blue line is the prediction of the MS model with G = 40 nm (see main text; reduced χ2 = 2.9). (b-d)
Residuals of the fits in panel a, defined as Ceff, experiment − Ceff, theory. (b) Residuals for the Moroz and Nelson formula with
fixed A and C. (c) Residuals for the Moroz and Nelson formula with the (high force) value for C fit to the data. It is apparent
that the residuals do not scatter symmetrically about zero for neither of the two version of the Moroz and Nelson formula. (d)
Residuals for the MS model with G = 40 nm. Not only does this model achieve the lowest χ2, but the residuals also scatter
clearly more symmetrically about zero.

is described by the TWLC, while Eq. (S44) is less constraining, assuming only that the asymptotic corrections to
Ceff(f) at high forces are of the order 1/

√
f .

Fig. S10(a) shows a comparison between all available Ceff data and the Moroz-Nelson theory of the TWLC, using
the two different fitting procedures (i.e. Eqs. (S44) and (S45)). We compare them to the predictions of the MS model,
presented in the main text. Calculating the reduced χ2 value, in combination with plotting the corresponding residuals
(Fig. S5(b-d)), leads us to the conclusion that the TWLC cannot account for the experimental data. It is only when
using the MS model, with the high-force extrapolated value of C described above, that we obtain a quantitative fit
to the experimental data.
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Method C (nm) κt (nm)

Ceff fit Eq.(S45) from OT [13] 100

Ceff fit Eq.(S45) from OT [28] 102

Ceff fit Eq.(S45) from MT [15] 109

Ceff fit Eq.(S45) from MT [30] 97

Extension-rotation curves [33] 120

Extension-rotation curves [34] 109

Extension-rotation curves [35] 85

Stretching under- and overwound DNA [36] 86

High-force Ceff from RBA [27] 100-105

High-force Ceff from RBA [31] 96

Force-extension of twisted DNA [37] 75

Cyclization rates [38] 58

Cyclization rates [39] 83

Cyclization rates [40] 49

Topoisomer distribution [41] 71

Supercoils free energies [42] 74

FPA [43] 46

FPA [44] 53

Spin label [45] 36

TABLE I. Torsional stiffness measured with different techniques. Abbreviations used: OT (Optical tweezers), MT (Magnetic
tweezers), RBA (Rotor bead assay) and FPA (Fluorescence polarization anisotropy). According to the TWLC model all these
techniques are expected to measure the intrinsic torsional stiffness C. According to the MS model, instead, in absence of
stretching forces and due to bending fluctuations, the torsional stiffness gets renormalized to a lower value κt < C, given by
Eq. (S33). At strong stretching the bending fluctuations are suppressed and the MS model predicts that one should measure
C. We estimate C = 110 nm and κt = 75 nm. The data in the table are put in two different columns, separating experiments
sampling twists under stretching forces (under the column C) and without applied forces (under the column κt). Despite some
experimental variability, the data support the MS model predictions. Some remarks: Ref. [37] fits force extension curves at
fixed supercoil density in a region of small tension (f < 0.5 pN, see Fig. 10) therefore we expect that it samples the renormalized
torsional stiffness κT. FPA and spin label techniques estimate the torsional stiffness from torsional dynamics, and need as input
a model of dynamics as well.
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