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1. Supplementary Methods

A. DNA and restriction enzymes. All measurements used a 7.9-kbp DNA construct described previously (1, 2). For specific
attachment of the DNA to the magnetic bead and the flow cell surface, 600-bp PCR-generated DNA fragments labeled
with multiple biotin and digoxigenin moieties, respectively, were ligated to the DNA. The DNA construct was attached to
1.0 µm-diameter MyOne, streptavidin coated beads (Life Technologies, USA) by incubating 0.5 µL of picomolar DNA stock
solution and 2 µL MyOne beads in 150 µL 1× PBS (Sigma- Aldrich, USA; ≈ 150 mM monovalent salt, pH 7.4) for 5 min.
Experiments with restriction enzymes were carried out in a Ca2+-containing buffer (50 mM potassium acetate, 20 mM Tris
acetate, 10 mM calcium acetate, 100 µg/ml BSA, pH 7.0) based on the commercial Cutsmart buffer (NEB) and using commercial
preparations of the enzymes BsaXI, NaeI, and SacII (NEB). The enzyme stock solutions were diluted 20, 000− 50, 000x to
ensure that only approximately 30% of all tethers show interaction, thereby minimizing the possibility of tether interactions
with more than two enzyme complexes simultaneously.

B. Magnetic tweezers set up. The custom-built MT setup uses a pair of 5 × 5 × 5 mm3 permanent magnets (W-05-N50-G,
Supermagnete, Switzerland), oriented in a vertical configuration and separated by a 1 mm gap (3). The distance between
beads and magnets is controlled by a DC-Motor (M-126.PD2, PI, Germany), and magnet rotation is performed by another
DC-Motor (C-150.PD, PI, Germany). Beads are observed with a 40× oil immersion objective (UPLFLN 40×, Olympus, Japan)
and imaged with a CMOS sensor camera (12M Falcon2, Teledyne Dalsa, Canada). By reducing the field of view to 5% of the
original area (to 1792× 282 pixels, with pixelsize ≈ 110 nm) a frame rate of 1 kHz is achieved. Images are transferred to a
frame grabber (PCIe 1433, NI, USA) and analyzed in real-time with a custom-written tracking software (4). A LED (69647,
Lumitronix LED Technik GmbH, Germany) is used for illumination and a piezo stage (Pifoc P-726.1CD, PI, Germany) moves
the objective to produce the look-up table (LUT) to enable bead tracking during experiment. Forces were calibrated from the
transverse bead fluctuations as described (5).

Flow cells were assembled from two microscope coverslips (24× 60 mm, Carl Roth, Germany). Prior to assembly, the bottom
coverslip was coated with (3-glycidoxypropyl)trimethoxysilane (abcr GmbH, Germany), and 50 µL of a 5000× diluted stock
solution of polystyrene reference beads (Polysciences, USA) in ethanol (Carl Roth, Germany) was deposited on the silanized
slides, slowly dried, and baked at 80 °C for 1 min. The top coverslip was processed using a laser cutter, producing openings
with 1 mm radius, for liquid exchange. The two coverslips were glued together by a single layer of melted Parafilm (Carl Roth,
Germany), precut to form a ∼ 50 µL channel connecting the inlet and outlet opening of the flow cell. Following flow cell
assembly, 100 µg/ml anti-digoxigenin (Roche, Switzerland) in 1× PBS was introduced and incubated for 2 h. To minimize
nonspecific interactions, the flow cell was flushed with 800 µL of 25 mg/mL bovine serum albumin (Carl Roth, Germany),
incubated for 1 h and rinsed with 1 mL of 1× PBS. Subsequently, 50 µL of the bead-coupled DNA constructs were introduced
into a flow cell (see above), and allowed to bind for 5 min. Finally, the flowcell was rinsed with 2 mL of 1× PBS to flush out
unbound beads, and the magnet was mounted to constrain the supercoiling density of the tethers and to apply an upward force
on the beads.

C. Magnetic tweezers measurements. Prior to each measurement, selected beads were evaluated for the presence of multiple
tethers and for torsional constraint. The presence of multiple tethers was assessed by introducing negative supercoiling under
high tension (f = 5 pN.) For a single DNA tether, the formation of plectonemes at negative linking differences and f = 5 pN is
suppressed due to DNA melting and no height change is observed. In contrast, for the case of multiple tethers, introduction of
negative turns braids the DNA tethers, which decreases the z-extension of the bead. Beads bound by multiple tethers are
discarded from further analysis. The evaluation of extension fluctuations in the absence of protein is performed in PBS buffer,
by recording z-extension at different numbers of applied turns (i.e. changing ∆Lk) for 180 s each. Subsequently, measurements
are repeated at different forces.

Prior to flusing enzymes into the flow cell, we introduce 1 mL 10 mM Tris-HCl (pH = 8.0) buffer to replace the phosphate
buffer that would otherwise result in the formation of precipitates due to complexation with Ca2+ in the assay buffer. Next,
the assay buffer is introduced in the flow cell, followed by the application of a linking difference ∆Lk ' +25 in the tethers at
0.5 pN tension. The z-extension of supercoiled DNA tethers in assay buffer is recorded for > 10 min, to verify the absence of
anomalous behavior. Next, the z-translation motor that controls the magnet position is moved closer towards the flow cell, to
apply a force of 5 pN. Enzyme solution (100 µL) is then flushed in the flow cell at a flow rate ∼ 150 µL min−1, after which the
force is reduced to its original value (0.5 pN).

D. Analysis of magnetic tweezers data. Real-time tracking was performed using the open source software framework developed
previously (4). This framework employs the Quadrant Interpolation algorithm to enable accurate and simultaneous tracking
of many beads in parallel (6). Further processing of the MT data was carried out using custom-written Matlab and Python
routines.

E. Monte Carlo simulations: Model set up. We performed Monte Carlo simulations of a self-avoiding twistable wormlike chain
(TWLC) model, similar to the models employed previously (7–10). The DNA is represented by a chain of coarse-grained beads,
each corresponding to a segment of ten base pairs of the DNA molecule (see Fig. S4 (a)). Bend- and twist-deformations are
traced by assigning local orthogonal frames of reference (triads), T̂ = {ê1, ê2, ê3}, to each bead, such that the unit vector ê3
is oriented along the direction connecting a given bead with the next bead and the remaining vectors, ê1 and ê2, point in
directions perpendicular to the chain contour. The relative rotation that maps consecutive triads into each other is captured by
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a rotation vector Ω, pointing along the rotation axis and having magnitude equal to the rotation angle. Expressing the three
components of this vector in the coordinate system (specified by the respective triad) of the first of these two triads allows for
the definition of two bending components, Ω1 and Ω2, (which are the components along the vectors ê1 and ê2 respectively) and
a twist mode Ω3. Further details on the definition of these rotation fields can be found in Refs. (8), and (11).

The TWLC can be expressed in terms of these rotation fields. In its discretized version, the elastic energy of the TWLC is
given by

βETWLC = a

2

N∑
n=1

[
A
(
Ω2

1 + Ω2
2
)

+ CΩ2
3
]
, [1]

where a is the discretization length, and A and C are the bending and torsional stiffnesses as used in Eq. (7) and β = 1/kBT .
Stretching forces such as those applied by magnetic tweezers may be included by adding a contribution −f ·R to the energy,

with R the end-to-end vector and f the force. Furthermore, to appropriately model DNA supercoiling the repulsive electrostatic
interactions of the negatively charged DNA backbones are crucial, as they control the coiling density of plectonemic supercoils.
Following Rybenkov et al. (12), we model ion screened electrostatic interactions by effective excluded volumes (hard-sphere
potentials) attached to the chain-monomers. Saline conditions of the solvent may be taken into account by an appropriate
scaling of the bead radii. Combining these contributions, the total energy of a given chain configuration is given by

E = ETWLC − f ·R +
∑
i 6=j

VEV(ri, rj), [2]

where

VEV(ri, rj) =
{

0, if ||ri − rj || > dEV

∞, if ||ri − rj || ≤ dEV
, [3]

describes the excluded-volume interaction and where dEV is the effective diameter of the excluded volume beads.

F. Monte Carlo simulations: Sampling algorithm. Molecular configurations are generated by starting from a given initial
configuration followed by the iterative collective rotation of a subset of position vectors and triads, such that chain connectivity
and the internal definitions of the triad vectors remain preserved. Examples of such cluster moves are shown in Figs. S4 (b)
and (c). Generating a canonical ensemble of configurations is achieved by accepting newly generated configurations according
to the Metropolis criterion (13).

We design our simulations to closely resemble the setup of molecules within magnetic tweezers in the fixed linking number
ensemble. The molecules are tethered between a surface and a magnetic bead, and a force is applied to the bead in the direction
perpendicular to the surface. Fixing the bead orientation prevents twist from diffusing into or out of the system. Furthermore,
the magnetic bead is sufficiently large that under the range of applied forces, the DNA chain does not pass around the bead.
In the simulations, the bead rotation-constraint is imposed by fixing the orientations of the first and last triads. The bead
and surface, respectively, are represented by confining the chain between two parallel impenetrable surfaces attached to the
chain termini. Furthermore, since the Monte Carlo cluster moves are discrete and may lead to significant positional changes of
individual bead segments, a given move may lead to an internal chain crossing, which would change the linking number by
a multiple of 2 linking units. Such linking-violations are avoided by linearly interpolating the trajectory of all moved beads
(specified by the excluded volume attached to every segment) between their initial and final position and ascertaining whether
any of the beads violate the excluded volume constraint with any other bead along their respective trajectories. Moves leading
to a violation of that kind are always rejected. A snapshot of a typical supercoiled configuration containing 2 plectonemic
supercoils is shown in Fig. S4 (d).

G. Monte Carlo simulations: Parameterization. As input, the model requires three parameters: the bending- and torsional
stiffnesses A and C as well as the effective bead diameter dEV. We choose these parameters by optimizing the agreement
between simulated and experimental rotation curves. After exploring a grid of parameters, we find A = 40 nm, C = 100 nm
and a bead diameter of dEV = 4.0 nm, to yield the best agreement. A direct comparison between simulated and experimental
rotation curves is shown in Fig. 1(c) of the main text and a comparison highlighting the force-dependent curvatures in the
pre-buckling regime as well as the slope in the post-buckling regime of extension and variance is given in Fig. 1(d). We note
that the values of A = 40 nm and C = 100 nm fall well into the range of experimentally determined values for the bending and
torsional stiffness.
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2. Supplementary Text

A. Phenomenological analysis of extension �uctuations. Here we present a phenomenological discussion of the extension
variance, h� z2 i , of supercoiled DNA under tension. The energy of a given con�guration of DNA subject to force f and
with end-to-end distance, z, in the direction of the applied force is given by E = E0 � fz . Here, E0 accounts for the elastic
contributions of bending and twisting, while the term fz is the contribution of the work due to the applied force. The above
form of E implies that averages of z, z2 . . . can be expressed as suitable derivatives of the system free energy with respect tof ,
since di�erentiating the Boltzmann weight dn exp(� E=kB T)=df n introduces multiplicative factors of the form (z=kB T)n . In
particular, for the average extension and variance, these relations hold:

hzi = � L
dF
df

; h� z2 i = hz2 i � h zi 2 = � Lk B T
d2F
df 2

= kB T
dhzi
df

; [4]

where F is the free energy per unit length and L the total length of the molecule. Note that the variance is obtained by
di�erentiating hzi with respect to f . Let us consider the following expression for the average extension

hzi =

(
Q� 2 + W 0 � � < � s ;

�( � p � � ) � s < � � � p ;
[5]

with Q, W , � , � s and � p parameters. 0 � � < � s and � s < � � � p de�ne the pre- and post-buckling regimes, respectively.
Although Eq. (5) can be obtained from speci�c models (see ( 14, 15) and Sec. B) we use it as a simple phenomenological
expression to �t experimental data at low forces, f < 1 pN, where hzi is well-approximated by a symmetric function of � .
Di�erentiation of Eq. (5) in f gives

1
kB T

h� z2 i =

(
@f Q � 2 + @f W 0 � � < � s ;

@f �( � p � � ) + � @f � p � s < � � � p :
[6]

Eq. (4) implies that hzi and h� z2 i (= kB T dhzi =df ) will have the same functional dependence on � . The parameter Q(f ) is
negative, as experiments show that hzi in the pre-buckling regime is described by a concave parabola. Moreover,Q(f ) is a
monotonically increasing function of f , as the curvature in hzi decreases as the force is increased, hence@f Q > 0. Experiments
in the post-buckling regime show that the DNA extension decreases in the post-buckling regime with increasing supercoiling
density � . Moreover, the absolute value of the associated slopes decreases with increasing force. Therefore,� is positive and a
decreasing function of f , i.e. @f � < 0. In conclusion, this analysis shows that h� z2 i is an increasing function of the supercoiling
density both in the pre- and post-buckling phases and exhibits quadratic behavior pre-buckling and a linear increase with �
post-buckling.

B. DNA extension �uctuations from the two phase model. In the two phase model of linear DNA supercoiling ( 15) a DNA
molecule of length L stretched by a force f and with a supercoil density � is assumed to be composed of two phases: The
stretched phase with length �L and the plectonemic phase with length (1 � � )L . Stretched and plectonemic phases can have
di�erent supercoiling densities ( � and  , respectively) such that the total � = �� + (1 � � ) is �xed. Introducing S(� ) and
P( ), the free energies per unit length of the stretched and plectonemic phases (see a concrete example below), one minimizes
the total free energy of the system, which �xes the parameters � , � and  . One �nds that for 0 � � < � s the DNA molecule
is in the pure stretched phase with � = 1 , � = � (pre-buckling), while for � s � � � � p the molecule phase-separates into a
stretched phase and a plectonemic phase with0 < � < 1 (post-buckling). In the latter case, the average supercoiling densities
of the two phases areh� i = � s and h i = � p . For the calculations, we used the following free energies (15, 16)

S(� ) = � f

�
1 �

r
kB T
fA

�
+

CkB T ! 2
0

2

�
1 �

C
4A

r
kB T
fA

�
� 2 [7]

P ( ) =
P kB T ! 2

0

2
 2 ; [8]

with ! 0 = 1 :75 nm� 1 the intrinsic helical twist. Here S is the free energy of the twistable wormlike chain under stretching force
f and �xed supercoiling density � . Eq. (7) is a large force expansion, valid for kB T=fA � 1. This is a good approximation for
f > 0:5 pN. The parameters A and C are the bending and torsional sti�nesses of DNA. The free energy of the plectonemic
phase Eq. (8) is purely phenomenological. It is characterized by a single parameter P known as the e�ective torsional sti�ness
of the plectoneme. The double-tangent construction (minimization) leads to the following free energy at post-buckling (15)

F (�; f ) = �
C

C � P

"

f �
�

1 �
1

4A
CP

C � P

� r
fk B T

A

#

+ �! 0

r
2kB T CP

C � P

"
p

f �
1
2

�
1 �

1
4A

CP
C � P

� r
kB T

A

#

: [9]
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The mean extension in either phase is simply the force derivative of the respective free energy Eq. (7) and Eq. (9)

hzi
L

=

8
<

:

1 � 1
2

q
k B T
fA � C 2 ! 2

0
16

�
k B T
fA

� 3=2
� 2 0 � � < � s

C
C � P

h
1 � 1

2

�
1 � 1

4A
CP

C � P

� q
k B T
fA

i
� �! 0p

2f

q
k B T CP

C � P � s < � � � p ;
[10]

while di�erentiating once more yields the variance Eq. (4)

h� z2 i
kB T L

=

8
<

:

1
4f

q
k B T
Af + 3C 2 ! 2

0
32f

�
k B T
fA

� 3=2
� 2 0 � � < � s

1
4f

C
C � P

�
1 � 1

4A
CP

C � P

� q
k B T
fA + �! 0

(2 f ) 3= 2

q
k B T CP

C � P � s < � � � p :
[11]

Eq. (10) and Eq. (11) have been used to produce the solid lines (theory) in Fig. 1(c) of the main text.

C. Linking number �uctuations in plectonemic loop. In this section we show how the e�ective torsional sti�ness of the
plectonemic state P can be deduced from the linking number distribution within protein constrained loops, assuming that the
relative occupancy of the various states solely depends on the free energy of the supercoiling state of the DNA and not on the
binding free energy of the protein (i.e. if the protein binding a�nity is independent of the torque within the DNA template).
Fig. S5 illustrates the looped and unlooped domains formed upon protein binding of lengths � L and L � = L � � L . The total
excess linking number � Lk is partitioned between the two domains: � Lk loop and � Lk � � Lk loop are the linking number of
the looped and unlooped parts. The total free energy then takes the form:

F (L; � L; � Lk; � Lk loop ) = F l (� L; � Lk loop ) + Fu (L � � L; � Lk � � Lk loop ) + Fb ; [12]

where F l are Fu are the free energy of the looped and unlooped domains, respectively, whileFb is the protein-binding free
energy. The latter is assumed to be independent of linking number and need not be considered in what follows. The looped
domain is in the pure plectonemic state and its free energy is given by Eq. (8)

F l (L; � Lk loop ) =
1
2

4� 2P kB T
� L

�
� Lk loop

� 2
; [13]

where we used! 0 � = 2� � Lk
L to convert supercoiling density to linking number. The unlooped domain consists of coexisting

plectonemic and stretched phases, and its free energy is given by Eq. (9). This free energy is linear in the supercoiling density,
thus is a linear function of � Lk loop and it will therefore not a�ect �uctuations of � Lk loop which are determined by the
quadratic term Eq. (13). Equipartition thus yields

D�
�� Lk loop

� 2
E

=
� L

4� 2P
; [14]

where we have de�ned �� Lk loop � � Lk loop �


� Lk loop

�
. Accordingly, �uctuations of the linking number in the loop are fully

controlled by P the e�ective torsional sti�ness of the plectoneme, which can be readily deduced from the analysis of the linking
number �uctuations.

D. Master equation description of protein dissociation and reassociation. We interpret the steps observed in the extension
time traces for NaeI as linking number exchanges between looped and unlooped domains. These exchanges should happen
through (partial) dissociation of the protein, followed by the rebinding in a di�erent conformation. We write the generic
Master equation for the process described schematically in Fig. S9, assuming that there is a single dissociated state and several
protein-bound states. In this model, there is no direct transition between two protein-bound states. Indicating with w� (t) and
wi (t) the probability of being in the dissociated and i th protein bound state, respectively, the Master equation then takes the
form

dw� (t)
dt

=
X

i

P(i ! � )wi (t) �
X

i

P(� ! i )w� (t); [15]

dwi (t)
dt

= P(� ! i )w� (t) � P (i ! � )wi (t) (i labels protein bound states): [16]

The P(i ! � ) and P(� ! i ) are the unbinding and binding transition rates, respectively. We use P(i ! � ) = � independent on
i , i.e. we assume that dissociation is not in�uenced by the supercoiled state of DNA. The reverse rate is then �xed by detailed
balance P(i ! � ) = �e � � � E i , with � = 1 =kB T the inverse temperature and � E i the energy di�erence between the dissociated
state and the i th bound state. This energy accounts for the protein binding energy and for the supercoiling contribution, the
latter being di�erent for di�erent linking number partitionings between looped and unlooped domains. Using this de�nition of
the rates and the normalization condition,

P
i wi = 1 � w� , Eq. (15) takes the form

dw� (t)
dt

= � [1 � (1 + Z )w� (t)] ; [17]
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with Z =
P

i exp(� �E i ) the equilibrium partition function for the bound states. The solution of Eq. (17) for the initial
condition w� (0) = 0 is

w� (t) =
1 � e� � (1+ Z ) t

1 + Z
: [18]

At long times, � (1 + Z )t � 1, this evolves to the stationary value w� = (1 + Z ) � 1 . Inserting this limit value in Eq. (16) we
obtain

dwi (t)
dt

= �e � � � E i w� (t) � �w i (t) �
�e � � � E i

1 + Z
� �w i (t): [19]

As MT traces cannot detect transition to the dissociated state, we rewrite the process with an e�ective Master equation, where
this state is integrated out. For this purpose, we use the stationary solution for w� and rewrite the normalization condition as
follows: X

i

wi + w� = 1 !
X

i

pi = 1
h
with pi �

wi

1 � w�
=

1 + Z
Z

wi

i
: [20]

The renormalized probabilities are larger than the original probabilities ( pi > w i ), because they absorb the �unobservable�
dissociated state. Multiplying both sides of Eq. (19) by (1 + Z )=Z and using Eq. (20) we get

dpi (t)
dt

=
�e � �E i

Z
� �p i (t) =

�e � � � E i

Z

X

j

pj (t) � �p i (t) =
�e � � � E i

Z

X

j 6= i

pj (t) � �

�
1 �

e� � � E i

Z

�
pi (t)

�
X

j 6= i

eP(j ! i )pj (t) �
X

j 6= i

eP(i ! j )pi (t): [21]

This e�ective Master equation is characterized by direct transitions between bound states with associated rates,

eP(i ! j ) =
�e � � � E j

Z
: [22]

This e�ective rate is indicated by a dashed arrow in Fig. S9. The escape rate from a given i th protein-bound state is given by

� i �
X

j 6= i

eP(i ! j ) = �

�
1 �

e� � � E i

Z

�
: [23]

This is smaller than the intrinsic protein dissociation rate � because, when compared to the full model, the e�ective transition
i ! j involves at least two steps i ! � ! j , but also multiple re-associations to the same state, such asi ! � ! i ! � ! j ,
i ! � ! i ! � ! i ! � ! j and so on . . . As a consequence, the characteristic dwell time,� i � � � 1

i , for the i th protein-bound
state measured in a MT experiment is longer than the protein dissociation rate � p � � � 1 . Eq. (23) gives,

� p =

�
1 �

e� � � E i

Z

�
� i ; [24]

which is the relation reported in the main paper, where we have used pi = e� � � E i =Z for the equilibrium probability distribution.

E. Effect of linking number exchange on hzi and h� z2 i . In the main text, we have derived the e�ect of protein binding on the
extension average,hzi , and variance, h� z2 i . We have shown that hzi does not change after protein binding and that h� z2 i
drops by an amount proportional to the length of the looped domain � L . This result is based on the assumption that the
looped domain has a supercoiling density equal to � p . However, the amount of linking number in a given loop prior to protein
binding is subject to �uctuations, such that the supercoiling density in the looped domain may assume the slightly di�erent
value � p + � � p . Here, we reexamine the calculation for the change in mean extension and variance for this more general
assumption. We use the same notation as in the main text: L � = L � � L is the length of the unlooped domain and � � its
supercoiling density. One has

L � (� p � � � ) = ( L � � L )� p � [L� � � L (� p + � � p )] = L (� p � � ) + � L � � p : [25]

The excess linking number of a domain of length � L and supercoiling density � p is given by

� Lk loop = � L
! 0 � p

2�
; [26]

which implies that a change of �� Lk loop units of linking number in the looped domain amounts to

� L � � p =
2�
! 0

�� Lk loop : [27]

Combining Eqs. (25) and (27) with Eq. (4) of the main text we �nd for the average extension after protein binding

hzi � = L � � ( � p � � � ) = hzi + � L �� � p = hzi +
2� �
! 0

�� Lk loop : [28]
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The mean extension does not remain constant but exhibits a small change proportional to �� Lk loop . Using the estimate,
� = 15 , from experimental data for f = 0 :5 pN (from Fig. 1 of the main text), we �nd 2� � =! 0 = 53 nm. This value is consistent
with the jump size observed for NaeI (Fig. 5 of the main text).

A similar calculation can be performed for the variance. For a change in excess linking number of �� Lk loop in the looped
domain, we �nd a variance drop upon protein binding of

h� z2 i � � h � z2 i = � kB T � L �
@�p
@f

�
2�k B T

! 0

@�
@f

�� Lk loop : [29]

The �rst term on the right-hand side of the previous equation is the term discussed in the main paper, showing a drop in the
variance proportional to � L . For the rotation curve subject to a stretching force of 0:5 pN, we can estimate � kB T @� =@f= 32 nm
from the slope of the variance data at post-buckling (see Eq. (5) of the main paper). This yields a contribution to the variance
of � 2�k B T ! � 1

0 @� =@f= 114 nm2 per unit of �� Lk loop . While an integer change of linking number amounts to a change of
about 5% in the extension, the variance exhibits a signi�cantly lower relative change of only about 1%. Therefore, it is a better
strategy to rely on extension changes to record topology-changing events.
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3. Supplementary Table

Table S1. Curvatures and slopes in the pre- and postbuckling regimes, respectively, from both experimental (“MT”) and simulated (“MC”)
rotation curves. These are the same data as in Figure 1d.

f (pN) Curv. hzi (nm=turn 2) Slope hzi (nm=turn) Curv. h� z2 i (nm2=turn 2) Slope h� z2 i (nm2=turn)
0.25 MT � 2:67 � 0:35 � 67:0 � 0:8 94:1 � 15:6 257� 103

MC � 2:98 � 0:06 � 63:2 � 0:4 79:5 � 1:5 180� 20
0.5 MT � 1:01 � 0:17 � 56:3 � 1:7 11:8 � 2:2 140� 23

MC � 0:93 � 0:02 � 52:4 � 0:2 13:8 � 0:8 114� 6
1 MT � 0:30 � 0:01 � 46:0 � 1:1 2:54 � 1:05 70� 30

MC � 0:35 � 0:01 � 42:5 � 0:1 2:68 � 0:11 43� 2
2 MT � 0:11 � 0:035 � 33:9 � 0:19 0:64 � 0:37 21� 4:7

MC � 0:13 � 0:002 � 35:9 � 0:10 0:49 � 0:02 16:4 � 1:9
5 MT � 0:022� 0:012 � 26:3 � 0:35 0:067� 0:030 8:4 � 2:5

MC � 0:035� 0:001 � 29:7 � 0:07 0:059� 0:002 2:1 � 1:0
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4. Supplementary Figures

Fig. S1. Time scales of DNA extension �uctuations. (a) Extension time traces of 7.9 kbp DNA held in
magnetic tweezers at a stretching force off = 0.5 pN. Traces are for� Lk = 0, corresponding to torsionally relaxed
DNA and � Lk = 27, which is in the plectonemic regime. (b) Temporal autocorrelation of the extension traces from
panel a (colored circles). The lines are �ts of single exponential functionse� �=� c , where � c is the characteristic time.
(c) Characteristic times � c of the DNA extension �uctuations as function of � Lk for di�erent forces. Characteristic
times were obtained through temporal autocorrelation analyses as the ones shown in panel b. The single spike in the
characteristic times in each curve is due to the buckling point, which is associated with (relatively) slow transitions
between the pre- and post-buckling states.
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Fig. S2. DNA force-extension measurement in MT. Force-extension curve for 7.9-kb DNA in PBS bu�er.
Symbols are experimental data, the line is a �t of the WLC model (17). From the �t, we �nd a DNA contour length
of L = (2 :67 � 0:12) µm bending persistence length ofA = (40 :2 � 1:2) nm (mean and standard deviation from
13 independent measurements). Data points in the �gure show one typical experiment for clarity. The inset is a
semi-logarithmic representation of the same data.
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Fig. S3. Force-dependence of the signal-to-noise in MT topology assays. A quantitative understanding
of extension �uctuations is useful since the level of �uctuations determines the signal-to-noise in single-molecule
measurements, e.g. of proteins that change the linking number of supercoiled DNA, such as topoisomerases (18�20)
and polymerases (21� 23). In such experiments that use extension changes in the plectonemic regime to deduce
protein-induced linking number changes� Lk , the signal in the experiment is proportional to the slope ofhzi versus
� Lk , i.e. the slope in the linear regime of extension versus linking number, which decreases with force, approximately
as S � f � 1=2 (Figure 1d).
Conversely, the noiseN is given by the �uctuations in z (N =

p
h� z2i ), which also decrease with force, with a

scaling similar to N � f � 3=4. In a �rst approximation, we estimate the noise in these experiments as the mean
standard deviation of the extension �uctuations over the entire plectonemic regime (Figure 1c, bottom panel, the
region indicated by the turquoise lines).
For each force, we quanti�ed the signal-to-noise ratio for a minimum of 5 individual DNA molecules, the symbols and
error bars are the mean� standard deviation. The force-dependence of the signal-to-noise ratio was �tted using a
power law (red dashed line), which yields a pre-exponential factor0:76 � 0:05 and a scaling exponent0:21 � 0:06
(errors are 95% con�dence intervals). From the scaling considerations, the signal-to-noise (black symbols) is expected
to increases with force, albeit slowly, asS=N � f 1=4, which is in quantitative agreement with the scaling exponent
found from our experimental data. A similar reasoning predicts a scaling of the signal-to-noise ratio with DNA
contour length L as S=N � L � 1=2. Taken together, the detection of a given change in� Lk is facilitated by measuring
with short DNA constructs at high forces.
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Fig. S4. Coarse-grained Monte Carlo model for DNA. (a): Mapping of a DNA molecule into the TWLC
model. The DNA molecule is coarse grained into a chain of beads whose positions are speci�ed by orthogonal triads.
(b) and (c): Schematic representation of Monte Carlo cluster moves that preserve the integrity of the chain and
preserve the orientation of the terminal triads. (d): A snapshot of a typical supercoiled con�guration from the
simulations. Each triad is visualized by a bead.
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